首页> 外文OA文献 >Multi-fidelity optimization strategy for the industrial aerodynamic design of helicopter rotor blades
【2h】

Multi-fidelity optimization strategy for the industrial aerodynamic design of helicopter rotor blades

机译:直升机旋翼桨叶工业空气动力学设计的多保真度优化策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The industrial aerodynamic design of helicopter rotor blades needs to consider the two typical flight conditions of hover and forward flight simultaneously. Here, this multi-objective design problem is tackled by using a genetic algorithm, coupled to rotor performance simulation tools. The turn-around time of an optimization loop is acceptable in an industrial design loop when using low-cost, low-fidelity tools such as the comprehensive rotorcraft code HOST, but becomes excessively high when employing high-fidelity models like CFD methods. To incorporate high-fidelity models into the optimization loop while maintaining a moderate computational cost, a Multi-Fidelity Optimization (MFO) strategy is proposed: as a preliminary step, a HOST-based genetic algorithm optimization is used to reduce the parameter space and select a set of blade geometries used for initializing the high-fidelity stage. Secondly, the selected blades are re-evaluated by CFD and used to construct a high-fidelity surrogate model. Finally, a Surrogate Based Optimization (SBO) is carried out and the Pareto optimal individuals according to the SBO are recomputed by CFD for final performance evaluation. The proposed strategy is validated step by step. It is shown that an industrially acceptable number of CFD-simulations is sufficient to obtain blade designs with a significantly higher performance than the baseline and then SBO results issued from a standard Latin-Hypercube-Sampling initialization. The proposed MFO strategy represents an efficient method for the simultaneous optimization of rotor blade geometries in hover and forward flight.
机译:直升机旋翼桨叶的工业空气动力学设计需要同时考虑悬停和向前飞行的两个典型飞行条件。在这里,这个多目标设计问题是通过使用遗传算法和转子性能仿真工具来解决的。当使用低成本,低保真度的工具(例如全面的旋翼飞机代码HOST)时,优化设计的周转时间在工业设计环路中是可以接受的,但是在采用诸如CFD方法的高保真度模型时,优化时间会过长。为了在保持适度计算成本的同时将高保真模型纳入优化循环,提出了一种多保真优化(MFO)策略:作为第一步,使用基于HOST的遗传算法优化来减少参数空间并选择一组用于初始化高保真阶段的刀片几何。其次,通过CFD对选定的叶片进行重新评估,并将其用于构建高保真替代模型。最后,进行基于代理的优化(SBO),并根据CBO重新计算根据SBO的帕累托最优个体,以进行最终绩效评估。所提出的策略是逐步验证的。结果表明,工业上可接受的CFD模拟数量足以获得性能明显高于基准的刀片设计,然后通过标准Latin-Hypercube-Sampling初始化发布SBO结果。提出的MFO策略代表了一种同时优化悬停和向前飞行中的转子叶片几何形状的有效方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号